抽象代数中极小多项式怎么求
代数基础知识入门思维是什么?
代数基础知识入门思维是什么?
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。
初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。
他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。
他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
代数的定义和性质?
代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
初等代数是更古老的算术的推广和发展。代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。
代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
二次型多项式的最小值?
只有二次项系数为正才有最小值
aX^2 bX ca(X b/2a)^2 c-b^2/4a
当X-b/2a时取得最值。
a大于零是最最小值
a小于零是最大值
设函数是yax2 bx c,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。a0时开口向上,有最小值,当x-b/2a时,取得最小值为y(4ac-b^2)/4a;a0时开口向下,有最大值,当x-b/2a时,取得最大值为y(4ac-b^2)/4a。
二次函数最大值最小值求法
二次函数简介
二次函数的基本表示形式为yax2 bx c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为yax2 bx c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。
7世纪印度的婆罗摩笈多是第一位懂得使用代数方程的人,它同时容许有正负数的根。