用消元法解线性方程组知识点总结 方程组的通解是什么?

[更新]
·
·
分类:行业
3844 阅读

用消元法解线性方程组知识点总结

方程组的通解是什么?

方程组的通解是什么?

通解就是找到一个满足方程的解.
用小学初中的知识来做的话,这个时候我们就是要消元.
把x1用其他未知量表示出来带入其它方程化简,这个时候就少了一个未知量,少了一个方程.
再亦同理,把x2,x3.....带入其它方程化简,最后就剩下了一个方程,里面可能有多个量.
因为我们只要一个任意的解就可以了,所以这个时候你随便赋值未知量满足方程就可以.
回返带入得到一组未知量的解.这个就可以作为通解. (如果方程和未知量不多的具体题目中可以这么算)
线性代数课本里面的方法就是高斯消元法.
把方程进行排列之后,系数组成矩阵,从底部到高进行带入消减,(其实就类似于上面的过程)
最后得到一个k*k的未知量系数组成的矩阵,加上右边的数值组成增光矩阵.
这个时候就是一个k元一次方程组,消元可以得到唯一的解,是关于x1,x2,...,x(k)的.
再对x(k 1)到x(n)进行一个简单赋值,就可以得到一组通解.

线性方程组的直接解法心得体会?

线性方程组的直接解法:一是用代入消元法消去一个未知数将二元变为一元方程求解,二是用加减消元法将二元变为一元方程求解。

初等变换的实质?

初等变换采用消元法来解线性方程组,而消元法实际上是反复对方程进行变换,而所做的变换也只是以下三种基本的变换所构成:
(1)用一非零的数乘以某一方程
(2)把一个方程的倍数加到另一个方程
(3)互换两个方程的位置
于是,将变换(1)、(2)、(3)称为线性方程组的初等变换。
初等变换是三种基本的变换,出现在《高等代数》中。初等变换包括:线性方程组的初等变换、行列式的初等变换和矩阵的初等变换 ,这三者在本质上是一样的。

高斯分解法的步骤?

高斯消去法,又称高斯消元法,实际上就是我们俗称的加减消元法。 数学上,高斯消去法或称高斯-约当消去法,由高斯和约当得名(很多人将高斯消去作为完整的高斯-约当消去的前半部分),它是线性代数中的一个算法,用于决定线性方程组的解,决定矩阵的秩,以及决定可逆方矩阵的逆。
当用于一个矩阵时,高斯消去产生“行消去梯形形式”。
一个二元一次方程组,设法对每个等式进行变形,使两个等式中的同一个未知数的系数相等,这两个等式相减,得到一个新的等式,在这个新的等式中,系数相等的未知数就被除去了(系数为0)。
同样的也适合多元多次方程组。高斯消元是求解线性方程组的重要方法,在OI中有广泛的应用。本文就来讨论这个方法。 什么是线性方程组?含m个方程和n个未知量的方程组定义为 a(11)x(1) a(12)x(2) ... a(1n)x(n)b(1) a(21)x(1) a(22)x(2) ... a(2n)x(n)b(2) ... a(m1)x(1) a(m2)x(2) ... a(mn)x(n)b(m) 这个方程组称为m*n线性方程组,其中a(ij)和b(i)为实数,括号中为下标。 这个方程组有多种表示方法。
例如,我们知道m*n矩阵(用大写字母表示)是一个m行n列的数阵,n维向量(用加粗的小写字母表示)是n个数的数组,也就是一个n*1矩阵(列向量。我们不考虑行向量)。
另外,大家也都知道矩阵乘法。
因此一个m*n线性方程组可以表示为 Axb,其中A是由系数aij组成的m*n矩阵即系数矩阵,x是n维的未知数向量,b是m维的结果向量。
如果把向量b写到A的右边得到m*(n 1)的矩阵,得到的新矩阵称为这个方程组的增广矩阵。
每一个方程组均对应于一个增广矩阵。