如何判断函数的可导性
一个函数在区间可导的性质?
一个函数在区间可导的性质?
1、首先证明函数在区间内是连续的。
2、用函数求导公式对函数求导,并判断导函数在区间是否有意义。
3、用定义法对端点和分段点分别求导,并且分要证明分段点的左右导数均存在且相等。
证明一个函数在一个区间内可导即证明在定义域中每一点导数存在。函数在某点可导的充要条件:左导数和右导数都存在并且相等。
如何判断函数的可导性?
即设yf(x)是一个单变量函数, 如果y在xx0处左右导数分别存在且相等,则称y在xx[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
1、设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0 a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
2、若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。 函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。 可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
如何判断一个函数是否可导具有可导性?
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0 ), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)f(x0 ),只有以上都满足了,则函数在x0处才可导。 函数可导的条件: 如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。 可导的函数一定连续;不连续的函数一定不可导。 可导,即设yf(x)是一个单变量函数, 如果y在xx0处存在导数y′f′(x),则称y在xx[0]处可导。 如果一个函数在x0处可导,那么它一定在x0处是连续函数。 函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0 a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。 (2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。