光声成像设备价格
光声成像原理?
光声成像原理?
光声信号产生的基本原理是:当用短脉冲激光照射吸收体时,吸收体中的分子吸收光子后,当满足一定的条件时,吸收体分子的电子从低能级跃迁到高能级而处于激发态,而处于激发态的电子极不稳定,当电子从高能级向低能级跃迁时,会以光或热量的形式释放能量。
在光声成像应用中通常会选择合适波长的激光作为激发源,使吸收的光子的能量转化为热能的效率最大,通常从光能转化为热能的效率可达到90%以上。释放的热量导致吸收体局部温度升高,温度升高后导致热膨胀而产生压力波,这就是光声信号。
因此,光声信号的产生过程就是“光能”-“热能”-“机械能”的转化过程。
光声成像过程可以分为三个部分:信号的产生、信号的接收和信号处理及图像重建。
由于脉冲激光器具有光声转换效率高的优点,因此通常被作为光声成像研究中产生信号的激励源。脉冲激光器发出的激光束照射在待研究组织样品上,由于组织样品的吸收效应,在样品内部形成了与组织光学参数相关的能量沉积分布。由于激光脉宽很窄(ns)吸收的能量不能在短时间内释放,导致瞬间温度变化,从而通过热弹机制转化为热膨胀。周期性热流使周围的介质热胀冷缩而激发超声波,由于这种超声波信号的特殊产生机理,为了区别于其它的超声信号,通常称为光声信号。
利用超声探测器接收光声信号并对采集到的信号进行适当地处理和采用相应的图像重建算法,就能够得到样品内部光能量沉积的分布。当保证入射光的均匀性的前提下,光声重建图像与吸收分布具有一一对应的关系。
光声成像优缺点?
第一,由于激光的窄线宽,利用生物组织的高光谱选择性吸收差异,光声成像能够实现高特异性光谱组织的选择激发, 不仅可以反映组织结构特征,更能够实现功能成像,开创了一种有别于传统医学影像技术的新成像方法与技术手段。
第二,光声成像结合了光学成像和声学成像的优点。一方面,比纯光学成像穿透更深(可突破激光共聚焦显微成像(LCSM)、双光子激发显微成像(TPEF)、光学弱相干层析成像(OCT)等高分辨率光学成像深度“软”极限(~1mm);另一方面,比传统的MRI以及PET成像拥有更高的分辨率;其图像分辨率可达到亚微米、微米量级,可实现高分辨率的分子成像。
第三,光声成像是一种非侵入式成像技术,这对于在体成像非常重要。由于使用的激光功率密度低于生物组织损伤阈值,组织中产生的超声场强度远远低于组织的损伤阈值,所以光声成像是一种非入侵、非电离的无损伤的成像技术。
第四,随着光声成像系统的一体化、小型化,该成像系统比传统的MRI以及PET脑功能成像系统价格更便宜,使用更便捷,利于普及和推广。