行列式为什么能算出来 为什么求行列式方法不同?

[更新]
·
·
分类:行业
2668 阅读

行列式为什么能算出来

为什么求行列式方法不同?

为什么求行列式方法不同?

方法不同:
对于行列式而言绝大多数时候是求值,可以随便使用行变换和列变换以及其它手段,算出来就行了。对于矩阵而言,做什么样的变换就要看需求了,绝大多数时候都是可以使用列变换的,有时甚至是必须同时使用行变换和列变换的。
2、变换要求不同:
行列式进行变换的时候不能改变行列式的值,变换的时候用等于号表示,矩阵初等变换只要不改变矩阵的秩就可以了。
3、变换计算不同:
元素有公因子,行列式提取出来之后必须放在行列式的外面,不能丢弃掉,否则会影响结果,导致其数值发生改变,而矩阵你可以直接扔掉这个公因子,不影响结果。
4、作用不同:
行列式是一个值 , 它的变换必须保持行列式值的恒等, 否则没意义。矩阵的初等变换很重要, 可用来求矩阵的秩, 向量组的秩, 向量组的极大无关组, 线性表示, 解线性方程组等等。
觉得有用点个赞吧

行列式怎么提取公因式?

根据行列式的基本性质将所有行的元素都加到任意一行。出现行列式的行,全部的列的元素都相加的结果是一样的时候,我们要将所有行或所有列加到一起。最后应该把第1列当中的元素“3 λ”提取出来。
行列式提取公因式法则
1什么是行列式
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
2公因式
一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。